Genus stabilization for the components of moduli spaces of curves with symmetries
نویسندگان
چکیده
In a previous paper (Groups, Geometry, and Dynamics, 2015), we introduced a new homological invariant ε for the faithful action of a finite group G on an algebraic curve. We show here that the moduli space of curves admitting a faithful action of a finite group G with a fixed homological invariant ε, if the genus g′ of the quotient curve satisfies g′ 0, is irreducible (and non-empty if and only if the class satisfies the ‘admissibility’ condition). We achieve this by showing that the stable equivalence classes of Hurwitz generating systems are in bijection with the admissible classes ε.
منابع مشابه
Topology of Moduli Spaces of Tropical Curves with Marked Points
In this paper we study topology of moduli spaces of tropical curves of genus g with n marked points. We view the moduli spaces as being imbedded in a larger space, which we call the moduli space of metric graphs with n marked points. We describe the shrinking bridges strong deformation retraction, which leads to a substantial simplification of all these moduli spaces. In the rest of the paper, ...
متن کاملOn The Moduli of Surfaces Admitting Genus Two Fibrations Over Elliptic Curves
In this paper, we study the structure, deformations and the moduli spaces of complex projective surfaces admitting genus two fibrations over elliptic curves. We observe that, a surface admitting a smooth fibration as above is elliptic and we employ results on the moduli of polarized elliptic surfaces, to construct moduli spaces of these smooth fibrations. In the case of nonsmooth fibrations, we...
متن کاملOn Atkin-Lehner correspondences on Siegel spaces
We introduce a higher dimensional Atkin-Lehner theory for Siegel-Parahoric congruence subgroups of $GSp(2g)$. Old Siegel forms are induced by geometric correspondences on Siegel moduli spaces which commute with almost all local Hecke algebras. We also introduce an algorithm to get equations for moduli spaces of Siegel-Parahoric level structures, once we have equations for prime l...
متن کاملRelative Virtual Localization and Vanishing of Tautological Classes on Moduli Spaces of Curves
We prove a localization formula for the moduli space of stable relative maps. As an application, we prove that all codimension i tautological classes on the moduli space of stable pointed curves vanish away from strata corresponding to curves with at least i− g + 1 genus 0 components. As consequences, we prove and generalize various conjectures and theorems about various moduli spaces of curves...
متن کاملWeierstrass Cycles and Tautological Rings in Various Moduli Spaces of Algebraic Curves
We analyze Weierstrass cycles and tautological rings in moduli spaces of smooth algebraic curves and in moduli spaces of integral algebraic curves with embedded disks with special attention to moduli spaces of curves having genus ≤ 6. In particular, we show that our general formula gives a good estimate for the dimension of Weierstrass cycles for low genera.
متن کامل